7 Python Tools All Data Scientists Should Know How to Use
Apr 21, 2023 • Mohamadreza Mohtat
- IPython - IPython is a command shell for interactive computing in multiple programming languages, originally developed for the Python programming language, that offers enhanced introspection, rich media, additional shell syntax, tab completion, and rich history.
- GraphLab Create - GraphLab Create is a Python library, backed by a C++ engine, for quickly building large-scale, high-performance data products.
- Pandas - Combined with the excellent IPython toolkit and other libraries, the environment for doing data analysis in Python excels in performance, productivity, and the ability to collaborate. pandas does not implement significant modeling functionality outside of linear and panel regression; for this, look to statsmodels and scikit-learn. More work is still needed to make Python a first class statistical modeling environment, but we are well on our way toward that goal.
- PuLP - Linear Programming.
- Matplotlib - matplotlib is a plotting library for NumPy. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like wxPython, Qt, or GTK+.
- Scikit-Learn - Scikit-Learn is a simple and efficient tool for data mining and data analysis. It is built on NumPy,SciPy, and mathplotlib. Scikit-Learn has the following features: Classification, Regression, Clustering, Dimensionality Reduction, Model Selection, Preprocessing
- Spark - For distributed programming
- Older
- Newer
RECENT POSTS
- What is Regular Expression?
- Regular expressions - a simple overview
- 5 Python Tips to Supercharge Your Coding Skills
- Python Code Quality: Tools & Best Practices
- Merge Dictionaries in Python: 8 Standard Methods (with code)
- Ready to take your Python skills to the next level?
- Python 3.12 Preview: Ever Better Error Messages
- 7 Python Tools All Data Scientists Should Know How to Use
- Python Code Quality
- Developing an API with FastAPI and GraphQL
- All posts ...